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What is 
sequence 

processing?

• Automated processing of sequential items 
(e.g., words in a sentence) while taking into 
account temporal information (e.g., w1
occurs before w2)
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Language is inherently temporal.
• Continuous input streams of indefinite length
• These sequences unfold over time

I hope there are no more midterms between now and the end of the semester.

no I hope there are more midterms between now and the end of the semester.

≠
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This is even evident 
in the way we talk 
about language!

• Conversation flow
• News feed
• Twitter stream
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We’ve already 
looked at a 

few 
applications 
of sequence 

processing….

• Syntactic parsing
• Part of speech tagging
• Viterbi algorithm

Natalie did not like social events so she politely declined the 
party invitation.

verb? noun? adjective?
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…and many applications that do not 
incorporate temporal information.
Training

Document Class

Natalie was soooo thrilled that Usman had a famous new 
poem.

Sarcastic

She was totally 100% not annoyed that it had surpassed 
her poem on the bestseller list.

Sarcastic

Usman was happy that his poem about Thanksgiving was 
so successful.

Not 
Sarcastic

He congratulated Natalie for getting #2 on the bestseller list. Not 
Sarcastic

Test

Document Class

Natalie told Usman she was soooo totally happy for him. ?

P(Sarcastic) = 0.5
P(Not Sarcastic) = 0.5

Natalie told Usman she was soooo totally 
happy for him.

Word P(Word|Sarcastic) P(Word|Not Sarcastic)

Natalie 0.033 0.036

Usman 0.033 0.036

soooo 0.033 0.018

totally 0.033 0.018

happy 0.016 0.036

Sarcastic
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How can we adapt non-sequential models 
to make use of temporal information?

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

midterm wt+2

𝑃(𝑤% = “write”|𝑤%/0 = “to”, 𝑤%/3 = “down”, 𝑤%/6 = “sat”)

h1

h2

y1

…

“write”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary
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How can we adapt non-sequential models 
to make use of temporal information?

Natalie wt-5

sat wt-4

down wt-3

to wt-2

write wt-1

the wt

midterm wt+1

𝑃(𝑤% = “the”|𝑤%/0 = “write”, 𝑤%/3 = “to”, 𝑤%/6 = “down”)

h1

h2

y1

…

“the”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary
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How can we adapt non-sequential models 
to make use of temporal information?

Natalie wt-6

sat wt-5

down wt-4

to wt-3

write wt-2

the wt-1

midterm wt

𝑃(𝑤% = “midterm”|𝑤%/0 = “the”, 𝑤%/3 = “write”, 𝑤%/6 = “to”)

h1

h2

y1

…

“midterm”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary
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Disadvantages 
of the Sliding 
Window 
Approach

• Items outside the predetermined context 
window cannot impact the model’s 
decision
• What if a task requires information that 

can be arbitrarily distant from the point 
at which processing is occurring?

Limits the context from which 
information can be extracted

• Particularly problematic when trying to 
learn grammatical elements, e.g., 
constituent parses

Makes it difficult to learn 
systematic patterns
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The 
solution?

• Recurrent Neural Networks
• Neural networks designed specifically to 

handle temporal information
• Can accept variable length inputs 

without the use of fixed-size windows
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Recurrent 
Neural 
Networks 
(RNNs)

• The value of a unit is dependent on 
outputs from previous time steps as 
input

Networks that contain cycles 
within their connections

• Long short-term memory network 
(LSTM)

• Bidirectional LSTM (BiLSTM)
• Gated recurrent unit (GRU)

Many different variations 
among RNNs
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How do 
RNNs differ 

from 
standard 

feedforward 
neural 

networks?

• Memory!
• Loops in the network allow information to 

persist over time
• Information is stored between timesteps 

using an internal hidden state, and fed 
back into the model the next time it reads an 
input

• Some type of output is also predicted at 
each timestep

• New hidden states are determined as a function 
of the existing hidden state and the new input at 
the current timestep

• This function remains the same across 
timesteps
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Simple RNN

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation 
value from previous input)
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Thus, 
hidden 
layers in 
RNNs are 
more 
complex 
than in 
feedforward 
networks.

Capable of encoding outputs from 
earlier timesteps, which can thereby 
serve as additional context

Makes decisions based on both current 
input and outputs from prior timesteps

Does not impose a fixed-length limit on 
this prior context (can include 
information extending back to the 
beginning of the sequence)
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However, 
computation 
units still 
perform the 
same core 
actions.

• Input vector
• (New!) activation values for the 

hidden layer for the previous 
time step

Given:

• Weighted sum of inputs

Compute:
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Most 
Significant 

Change

• New set of weights, U, that connect the 
hidden layer from the previous time step to 
the current hidden layer

• These weights determine how the network 
should make use of prior context in 
determining the output for the current input

• Just like with feedforward networks, weights 
are trained using backpropagation
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Formal Definition

• Forward inference (mapping a 
sequence of inputs to a sequence of 
outputs) is quite similar to what 
we’ve seen with feedforward 
networks!

• Recall the basic set of equations for 
a feedforward neural network:

• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)
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Formal Definition

• The only change we need to make 
to the original set of equations is to 
add the additional (weights X 
activation values from previous 
timestep) product to the current 
(weights X inputs) product

• h = 𝜎 𝑊xt + 𝑈ht−1 + 𝐛
• z = 𝑉ht
• 𝑦 = softmax(z)

• Note that the weight matrices W, U, 
and V (the renamed weight matrix 
for the output layer) are shared 
across all timesteps
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How would this process look, 
illustrated as a feedforward network?

xt ht yt
W

U

V xt ht yt

ht-1
U

W V

Recurrent View Feedforward View
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Formal Algorithm
h0 ← 0  # Initialize activations from the hidden layer to 0

for i ← 1 to length(x) do:  # Iterate through each input element in 
temporal order

hi ← g(Uhi-1 + Wxi + b)  # Bias vector is optional

yi ← f(Vhi)

New values for h and y are calculated with each time step!
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Unrolling a simple RNN….

Natalie
sat
down
to
write
the
midterm

y1

…“write”

…

y|V|

…

h0

x1

h1
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Unrolling a simple RNN….

Natalie
sat
down
to
write
the
midterm

y1

…“write”

…

y|V|

…

h0x2

h1

y1

…“write”

…

y|V|

…

h2
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Unrolling a simple RNN….

Natalie
sat
down
to
write
the
midterm

x3

y1

…“write”

…

y|V|

…

h2

y1

…“write”

…

y|V|

…

h0

h1
y1

…“write”

…

y|V|

…

h3
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Training 
RNNs

• Same core elements:
• Loss function
• Optimization function
• Backpropagation

• One extra set of weights to update
• Previous hidden layer to current hidden 

layer (U)
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Additional 
Considerations for 
Computing Loss

• To compute the loss at time t we 
need the hidden layer from time t-1

• To assess the overall error accruing 
to ht, we need the current output as 
well as outputs that will follow
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Backpropagation 
Through Time

• Two-pass algorithm for 
training RNNs

• First pass: Perform forward 
inference

• Compute ht and yt at each step 
in time

• Compute the loss at each step 
in time

• Second pass: Process the 
sequence in reverse

• Compute the required error 
gradients at each step 
backward in time
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Forward Pass

h0 x1

y1

t1

h1
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Forward Pass

h0 x1

y1

t1

x2

y2

t2

h2

h1

10/29/19 Natalie Parde - UIC CS 421 29



Forward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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…and now…

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Applications of 
Recurrent Neural 

Networks

• Language modeling
• Part-of-speech tagging
• Sequence classification tasks
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RNNs also 
form the 
basis for 

sequence-
to-sequence 
approaches.

• Sequence-to-sequence (seq2seq): Model 
input and output are both sequences

• Useful for:
• Text summarization
• Machine translation
• Question answering

Chicago is 
colder than 
Antarctica 
today.

Chicago est plus 
froid que 
l'Antarctique 
aujourd'hui.
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Recurrent 
Neural 
Language 
Models

Both of these attempt to predict 
the next word in a sequence given 

a prior context of fixed length

What we’ve seen so far:

N-gram language 
models

Feedforward networks 
with sliding windows
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The problem 
with n-gram 
and 
feedforward 
language 
models?

In both approaches, model quality 
is dependent on context size

Anything outside the fixed context 
window has no impact on the 
model’s decision!
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Recurrent Neural 
Language Models

• Recurrent neural language models 
process sequences one word at a 
time, as seen in the previous slides

• This means that they avoid 
constraining the context size

• The hidden state embodies 
information about all of the 
preceding words, all the way back 
to the beginning of the sequence
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the 

current input word
2. Combine the weighted sums of (a) 

the input embedding values and (b) 
the activations of the hidden layer from 
the previous step, to compute a new 
set of activation values from the 
hidden layer

3. Generate a set of outputs based on 
the activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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Recurrent 
Neural 

Language 
Models

• Recurrent models can be trained using the 
same data used to train n-gram and 
feedforward language models

• Collection of representative text
• Correct class → still the word that actually 

comes next in the data
• Task: Predict the next word in a sequence 

given all previous words, rather than only 
those in a context window of size n
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How can we generate 
text with neural 

language models?

Model Completion (Machine-Written, 10 Tries): The scientist named the 
population, after their distinctive horn, Ovid’s Unicorn. These four-horned, 
silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd 
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and 
several companions, were exploring the Andes Mountains when they found a 
small valley, with no other animals or humans. Pérez noticed that the valley 
had what appeared to be a natural fountain, surrounded by two peaks of rock 
and silver snow.

Pérez and the others then ventured further into the valley. “By the time we 
reached the top of one peak, the water looked blue, with some crystals on 
top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These 
creatures could be seen from the air without having to move too much to see 
them – they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the 
creatures also spoke some fairly regular English. Pérez stated, “We can see, 
for example, that they have a common ‘language,’ something like a dialect 
or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where 
the animals were believed to be descendants of a lost race of people who 
lived there before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures 
were created when a human and a unicorn met each other in a time before 
human civilization. According to Pérez, “In South America, such incidents 
seem to be quite common.”

However, Pérez also pointed out that it is likely that the only way of knowing 
for sure if unicorns are indeed the descendants of a lost alien race is through 
DNA. “But they seem to be able to communicate in English quite well, which I 
believe is a sign of evolution, or at least a change in social organization,” said 
the scientist.
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Generation 
with Neural 

Language 
Models

1. Sample the first word in the output from 
the softmax distribution that results from 
using the beginning of sentence marker 
(<s>) as input

2. Get the embedding for that word
3. Use it as input to the network at the next 

time step, and sample the following word 
as in (1)

4. Repeat until the end of sentence marker 
(</s>) is sampled, or a fixed length limit is 
reached
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Autoregressive 
Generation

• This technique is referred to as 
autoregressive generation

• Word generated at each timestep 
is conditioned on the word 
generated previously by the 
model

• Key to successful autoregressive 
generation?

• Prime the generation component 
with appropriate context (e.g., 
something more useful than <s>)
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Autoregressive Generation

<s> RNN

softmax

pumpkin
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Autoregressive Generation

<s> RNN

softmax

pumpkin

pumpkin RNN

softmax

spice
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Autoregressive Generation

<s> RNN

softmax

pumpkin

pumpkin RNN

softmax

spice

spice RNN

softmax

latte
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Sequence Labeling

• Task: Given a fixed set of labels, 
assign a label to each element of a 
sequence

• Example: Part-of-speech tagging
• In an RNN:

• Inputs → word embeddings
• Outputs → label probabilities 

generated by the softmax (or 
other activation) function over the 
set of all labels
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Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

latte

t3

h3

adjective

noun
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Sequence 
Classification

• Task: Given an input sequence, 
assign the entire sequence to a 
class (rather than the individual 
tokens within it)

• Useful for:
• Document-level topic 

classification
• Spam detection
• Message routing
• Deception detection
• Any other applications for which 

sequences of text are classified 
as belonging to one of a small 
number of categories!
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How to use RNNs for sequence 
classification?

1

Pass the sequence 
through an RNN one 
word at a time, as 
usual

2

Assume that the 
hidden layer for the 
final word, hn, acts as a 
compressed 
representation of the 
entire sequence

3

Use hn as input to a 
subsequent 
feedforward neural 
network

4

Choose a class via 
softmax over all the 
possible classes
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Sequence Classification

pumpkin RNN

spice RNN

latte RNN
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Sequence Classification

pumpkin RNN

spice RNN

latte RNN

hn

FNN coffee
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Additional 
Guidelines for 

Sequence 
Classification

No intermediate outputs (e.g., “pumpkin” = coffee) for 
words in the sequence that precede the last word → no 
loss terms associated with those elements

Loss function is based entirely on final classification task!

However, errors are still propagated backward all the way 
through the RNN

The process of adjusting weights the entire way through 
the network based on the loss from a downstream 
application is often referred to as end-to-end training
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Deep Recurrent Neural 
Networks

RNN

hn

FNN

• As demonstrated with sequence classification, it is possible to 
combine neural networks to form more complex architectures

• RNN + Feedforward Neural Network
• Two RNNs
• Possibilities are (theoretically) endless!
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Stacked 
RNNs

• Use the entire sequence of outputs from 
one RNN as the input sequence to another

• Capable of outperforming single-layer 
networks

• Why?
• Having more layers allows the network 

to learn representations at differing 
levels of abstraction across layers

• Early layers → more fundamental properties
• Later layers → more meaningful groups of 

fundamental properties
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Stacked RNNs

RNN

hn1

RNN

hn2

RNN

hn3

• Optimal number of RNNs to stack together?
• Depends on application and training set

• More RNNs in the stack → increased training costs
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Bidirectional 
RNNs

• Simple RNNs only consider the information 
in a sequence leading up to the current 
timestep

• ℎ%
I = 𝑅𝑁𝑁ILMNOMP(𝑥0%)
• ℎ%

I corresponds to the normal hidden 
state at time t

• This could be visualized as the context to 
the left of the current time

Natalie ran to TBH 180G
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Bidirectional 
RNNs

• However, in many cases the context after 
the current timestep (to the right of the 
current time) could be useful as well!

• In many applications we have access to the 
entire input sequence at once anyway

Natalie ran to TBH 180G

Natalie ran her code again

10/29/19 Natalie Parde - UIC CS 421 59



Bidirectional RNNs

• How can we make use of 
information from both sides of the 
current timestep?

• Simple solution:
• Train an RNN on an input 

sequence in reverse
• ℎ%R = 𝑅𝑁𝑁ROSTNOMP(𝑥%U)

• ℎ%R corresponds to 
information from the 
current timestep to the 
end of the sequence

• Combine the forward and 
backward networks
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Bidirectional RNNs

• Two independent RNNs
• One where the input is processed from 

start to end
• One where the input is processed from 

end to start
• Outputs combined into a single 

representation that captures both the left 
and right contexts of an input at each 
timestep

• ℎ% = ℎ%
I⨁ℎ%R

• How to combine the contexts?
• Concatenation
• Element-wise addition, multiplication, 

etc.
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Bidirectional RNNs

RNN

RNN

Natalie ran to TBH 180G

180G TBH to ran Natalie

+
ℎ%

ℎ%
I

ℎ%R
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Bidirectional 
RNNs are 

particularly 
useful for 
sequence 

classification.

• Simple RNN → final state naturally reflects 
more information about the end of the 
sentence

• Bidirectional RNN → final state is a 
combination of the forward and backward 
passes
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Sequence Classification with a Bidirectional RNN

pumpkin RNN

spice RNN

latte RNN
FNN

coffee

latte RNN

spice
RNN

pumpkin
RNN

+
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Managing 
Context in 

RNNs

• In a simple RNN, the final state tends to 
reflect more information about recent items 
than those at the beginning of the sequence

• Distant timesteps → less information
• However, long-distance information can be 

critical to many applications!

N
atalie

took
a train
to O

’H
are

and
then
a plane
to L.A

.
and
then
a plane
to Tokyo
and
then
a plane
to M

iyazak
i w

here
she
finally
U

bered
to her
hotel

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30
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Why is it so 
hard to 
maintain 
long-
distance 
context?

• Provide information useful for the 
current decision (input at t)

• Update and carry forward information 
required for future decisions (input at 
time t+1 and beyond)

Hidden layers must perform two 
tasks simultaneously

• When small derivatives are repeatedly 
multiplied together (as would happen 
when backpropagating through time for 
a long sequence), gradients can 
become so close to zero at early 
layers that they are no longer 
effective for model training

Vanishing gradients
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How can we 
address this?

• Design more complex RNNs 
that learn to:

• Forget information that is 
no longer needed

• Remember information 
still required for future 
decisions

10/29/19 Natalie Parde - UIC CS 421 67



Long Short-Term 
Memory Networks 
(LSTMs)

• Remove information no longer needed 
from the context, and add information 
likely to be needed later

• Do this by:
• Adding an explicit context layer to 

the architecture
• Control the flow of information into 

and out of network layers using 
specialized neural units called 
gates

10/29/19 Natalie Parde - UIC CS 421 68



LSTM Gates

• Feedforward layer + sigmoid activation + 
pointwise multiplication with the layer being gated

• Combination of sigmoid activation and pointwise 
multiplication essentially creates a binary mask

• Values near 1 in the mask are passed through 
nearly unchanged

• Values near 0 are nearly erased
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LSTM 
Gates

• Forget gate: Should we erase this 
existing information from the context?

• Input gate: Should we write this new 
information to the context?

• Output gate: What information should 
be revealed as output for the current 
hidden state?

Three main gates:
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Long Short-
Term 

Memory 
Networks 

(LSTMs)

• LSTMs thus accept as input:
• Context layer
• Hidden layer from previous timestep
• Current input vector

• The output of the hidden layer can be used 
as input to subsequent layers in a stacked 
RNN, or to the network’s output layer
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Gated 
Recurrent 

Units 
(GRUs)

• Also manage the context that is passed 
through to the next timestep, but do so by 
utilizing a simpler architecture than LSTMs

• No separate context vector
• Only two gates

• Reset gate
• Update gate

• Gates still use a similar design to that seen 
in LSTMs

• Feedforward layer + sigmoid 
activation + pointwise multiplication 
with the layer being gated, resulting in a 
binary-like mask
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GRU Gates
• Reset: Which aspects of the previous hidden state are relevant to the current 

context?
• What can be ignored?

• Update: Based on the intermediate representation produced by the reset gate, 
which aspects will be used directly in the new hidden state?

• Which aspects of the previous state need to be preserved for future use?
• Recall that ht = 𝜎 𝑊xt + 𝑈ht−1 + 𝐛
• Letting ht’ be an intermediate representation learned by the reset gate, and z be 

an intermediate representation produced by the update gate:
• ht = 1 − zt ht−1 + ztht′
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Comparing Inputs and Outputs for 
Neural Units

x

h

xtht-1

ht

xtht-1

htct

ct-1 xtht-1

ht

Feedforward RNN LSTM GRU
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When to 
use LSTMs 
vs. GRUs?

• Computational efficiency: 
Good for scenarios in which you 
need to train your model quickly 
and don’t have access to high-
performance computing 
resources

Why use GRUs instead of 
LSTMs?

• Performance: LSTMs generally 
outperform GRUs at the same 
tasks

Why use LSTMs instead 
of GRUs?
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Do inputs to 
RNNs need to 

be word 
embeddings?

• Nope
• In some cases, word embeddings might not 

be the best type of input:
• Lexicon is so large that it is impractical 

to represent each possible word as an 
embedding

• Dataset has many unknown words
• Morphological information is critical to 

the task
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Alternatives 
to Word 
Embeddings

Input character sequences directly to the 
RNN

Input character 
sequences

Use subword representations rather than full 
word embeddings

Use subword
representations

Build input sequences based on information 
from linguistic analyses

Build input 
sequences
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Input 
representations 

can also be 
combined….

• Particularly successful: Word embeddings 
enriched with character information

• Learn embeddings from a bidirectional 
RNN that accepts character sequences 
for each word as input

• Concatenate the learned character 
embeddings with ordinary word 
embeddings

• Opportunities are endless …currently a very 
active research area!
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Summary: 
Sequence 

Processing 
with 

Recurrent 
Networks

• Sequence processing makes use of temporal
information from input sequences

• Recurrent neural networks (RNNs) are neural networks 
specifically designed for sequence processing

• Bonus: Can accept inputs of variable length
• RNNs base their decisions on both current input and 

activation values from the previous timestep
• RNNs are particularly useful for text generation, 

sequence labeling, and (when combined with a 
feedforward network) sequence classification

• More complex varieties of RNNs include:
• Stacked RNNs
• Bidirectional RNNs
• Long short-term memory networks (LSTMs)
• Gated recurrent units (GRUs)

• Although RNNs usually accept word embeddings as input, 
they can also use other types of input sequences (e.g., 
character sequences or subword embeddings)
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