
Sequence Processing
with Recurrent Networks

Natalie Parde, Ph.D.
Department of Computer
Science
University of Illinois at
Chicago

CS 421: Natural Language
Processing
Fall 2019

Many slides adapted from Jurafsky and Martin
(https://web.stanford.edu/~jurafsky/slp3/).

https://web.stanford.edu/~jurafsky/slp3/

What is
sequence

processing?

• Automated processing of sequential items
(e.g., words in a sentence) while taking into
account temporal information (e.g., w1
occurs before w2)

10/29/19 Natalie Parde - UIC CS 421 2

Language is inherently temporal.
• Continuous input streams of indefinite length
• These sequences unfold over time

I hope there are no more midterms between now and the end of the semester.

no I hope there are more midterms between now and the end of the semester.

≠

10/29/19 Natalie Parde - UIC CS 421 3

This is even evident
in the way we talk
about language!

• Conversation flow
• News feed
• Twitter stream

10/29/19 Natalie Parde - UIC CS 421 4

We’ve already
looked at a

few
applications
of sequence

processing….

• Syntactic parsing
• Part of speech tagging
• Viterbi algorithm

Natalie did not like social events so she politely declined the
party invitation.

verb? noun? adjective?

10/29/19 Natalie Parde - UIC CS 421 5

…and many applications that do not
incorporate temporal information.
Training

Document Class

Natalie was soooo thrilled that Usman had a famous new
poem.

Sarcastic

She was totally 100% not annoyed that it had surpassed
her poem on the bestseller list.

Sarcastic

Usman was happy that his poem about Thanksgiving was
so successful.

Not
Sarcastic

He congratulated Natalie for getting #2 on the bestseller list. Not
Sarcastic

Test

Document Class

Natalie told Usman she was soooo totally happy for him. ?

P(Sarcastic) = 0.5
P(Not Sarcastic) = 0.5

Natalie told Usman she was soooo totally
happy for him.

Word P(Word|Sarcastic) P(Word|Not Sarcastic)

Natalie 0.033 0.036

Usman 0.033 0.036

soooo 0.033 0.018

totally 0.033 0.018

happy 0.016 0.036

Sarcastic

10/29/19 Natalie Parde - UIC CS 421 6

How can we adapt non-sequential models
to make use of temporal information?

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

midterm wt+2

𝑃(𝑤% = “write”|𝑤%/0 = “to”, 𝑤%/3 = “down”, 𝑤%/6 = “sat”)

h1

h2

y1

…

“write”

…

y|V|

softmax
distribution over
all words in the
vocabulary

10/29/19 Natalie Parde - UIC CS 421 7

How can we adapt non-sequential models
to make use of temporal information?

Natalie wt-5

sat wt-4

down wt-3

to wt-2

write wt-1

the wt

midterm wt+1

𝑃(𝑤% = “the”|𝑤%/0 = “write”, 𝑤%/3 = “to”, 𝑤%/6 = “down”)

h1

h2

y1

…

“the”

…

y|V|

softmax
distribution over
all words in the
vocabulary

10/29/19 Natalie Parde - UIC CS 421 8

How can we adapt non-sequential models
to make use of temporal information?

Natalie wt-6

sat wt-5

down wt-4

to wt-3

write wt-2

the wt-1

midterm wt

𝑃(𝑤% = “midterm”|𝑤%/0 = “the”, 𝑤%/3 = “write”, 𝑤%/6 = “to”)

h1

h2

y1

…

“midterm”

…

y|V|

softmax
distribution over
all words in the
vocabulary

10/29/19 Natalie Parde - UIC CS 421 9

Disadvantages
of the Sliding
Window
Approach

• Items outside the predetermined context
window cannot impact the model’s
decision
• What if a task requires information that

can be arbitrarily distant from the point
at which processing is occurring?

Limits the context from which
information can be extracted

• Particularly problematic when trying to
learn grammatical elements, e.g.,
constituent parses

Makes it difficult to learn
systematic patterns

10/29/19 Natalie Parde - UIC CS 421 10

The
solution?

• Recurrent Neural Networks
• Neural networks designed specifically to

handle temporal information
• Can accept variable length inputs

without the use of fixed-size windows

10/29/19 Natalie Parde - UIC CS 421 11

Recurrent
Neural
Networks
(RNNs)

• The value of a unit is dependent on
outputs from previous time steps as
input

Networks that contain cycles
within their connections

• Long short-term memory network
(LSTM)

• Bidirectional LSTM (BiLSTM)
• Gated recurrent unit (GRU)

Many different variations
among RNNs

10/29/19 Natalie Parde - UIC CS 421 12

How do
RNNs differ

from
standard

feedforward
neural

networks?

• Memory!
• Loops in the network allow information to

persist over time
• Information is stored between timesteps

using an internal hidden state, and fed
back into the model the next time it reads an
input

• Some type of output is also predicted at
each timestep

• New hidden states are determined as a function
of the existing hidden state and the new input at
the current timestep

• This function remains the same across
timesteps

10/29/19 Natalie Parde - UIC CS 421 13

Simple RNN

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation
value from previous input)

10/29/19 Natalie Parde - UIC CS 421 14

Thus,
hidden
layers in
RNNs are
more
complex
than in
feedforward
networks.

Capable of encoding outputs from
earlier timesteps, which can thereby
serve as additional context

Makes decisions based on both current
input and outputs from prior timesteps

Does not impose a fixed-length limit on
this prior context (can include
information extending back to the
beginning of the sequence)

10/29/19 Natalie Parde - UIC CS 421 15

However,
computation
units still
perform the
same core
actions.

• Input vector
• (New!) activation values for the

hidden layer for the previous
time step

Given:

• Weighted sum of inputs

Compute:

10/29/19 Natalie Parde - UIC CS 421 16

Most
Significant

Change

• New set of weights, U, that connect the
hidden layer from the previous time step to
the current hidden layer

• These weights determine how the network
should make use of prior context in
determining the output for the current input

• Just like with feedforward networks, weights
are trained using backpropagation

10/29/19 Natalie Parde - UIC CS 421 17

Formal Definition

• Forward inference (mapping a
sequence of inputs to a sequence of
outputs) is quite similar to what
we’ve seen with feedforward
networks!

• Recall the basic set of equations for
a feedforward neural network:

• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

10/29/19 Natalie Parde - UIC CS 421 18

Formal Definition

• The only change we need to make
to the original set of equations is to
add the additional (weights X
activation values from previous
timestep) product to the current
(weights X inputs) product

• h = 𝜎 𝑊xt + 𝑈ht−1 + 𝐛
• z = 𝑉ht
• 𝑦 = softmax(z)

• Note that the weight matrices W, U,
and V (the renamed weight matrix
for the output layer) are shared
across all timesteps

10/29/19 Natalie Parde - UIC CS 421 19

How would this process look,
illustrated as a feedforward network?

xt ht yt
W

U

V xt ht yt

ht-1
U

W V

Recurrent View Feedforward View

10/29/19 Natalie Parde - UIC CS 421 20

Formal Algorithm
h0 ← 0 # Initialize activations from the hidden layer to 0

for i ← 1 to length(x) do: # Iterate through each input element in
temporal order

hi ← g(Uhi-1 + Wxi + b) # Bias vector is optional

yi ← f(Vhi)

New values for h and y are calculated with each time step!

10/29/19 Natalie Parde - UIC CS 421 21

Unrolling a simple RNN….

Natalie
sat
down
to
write
the
midterm

y1

…“write”

…

y|V|

…

h0

x1

h1

10/29/19 Natalie Parde - UIC CS 421 22

Unrolling a simple RNN….

Natalie
sat
down
to
write
the
midterm

y1

…“write”

…

y|V|

…

h0x2

h1

y1

…“write”

…

y|V|

…

h2

10/29/19 Natalie Parde - UIC CS 421 23

Unrolling a simple RNN….

Natalie
sat
down
to
write
the
midterm

x3

y1

…“write”

…

y|V|

…

h2

y1

…“write”

…

y|V|

…

h0

h1
y1

…“write”

…

y|V|

…

h3

10/29/19 Natalie Parde - UIC CS 421 24

Training
RNNs

• Same core elements:
• Loss function
• Optimization function
• Backpropagation

• One extra set of weights to update
• Previous hidden layer to current hidden

layer (U)

10/29/19 Natalie Parde - UIC CS 421 25

Additional
Considerations for
Computing Loss

• To compute the loss at time t we
need the hidden layer from time t-1

• To assess the overall error accruing
to ht, we need the current output as
well as outputs that will follow

10/29/19 Natalie Parde - UIC CS 421 26

Backpropagation
Through Time

• Two-pass algorithm for
training RNNs

• First pass: Perform forward
inference

• Compute ht and yt at each step
in time

• Compute the loss at each step
in time

• Second pass: Process the
sequence in reverse

• Compute the required error
gradients at each step
backward in time

10/29/19 Natalie Parde - UIC CS 421 27

Forward Pass

h0 x1

y1

t1

h1

10/29/19 Natalie Parde - UIC CS 421 28

Forward Pass

h0 x1

y1

t1

x2

y2

t2

h2

h1

10/29/19 Natalie Parde - UIC CS 421 29

Forward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

10/29/19 Natalie Parde - UIC CS 421 30

…and now…

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

10/29/19 Natalie Parde - UIC CS 421 31

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

10/29/19 Natalie Parde - UIC CS 421 32

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

10/29/19 Natalie Parde - UIC CS 421 33

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

10/29/19 Natalie Parde - UIC CS 421 34

Applications of
Recurrent Neural

Networks

• Language modeling
• Part-of-speech tagging
• Sequence classification tasks

10/29/19 Natalie Parde - UIC CS 421 35

RNNs also
form the
basis for

sequence-
to-sequence
approaches.

• Sequence-to-sequence (seq2seq): Model
input and output are both sequences

• Useful for:
• Text summarization
• Machine translation
• Question answering

Chicago is
colder than
Antarctica
today.

Chicago est plus
froid que
l'Antarctique
aujourd'hui.

10/29/19 Natalie Parde - UIC CS 421 36

Recurrent
Neural
Language
Models

Both of these attempt to predict
the next word in a sequence given

a prior context of fixed length

What we’ve seen so far:

N-gram language
models

Feedforward networks
with sliding windows

10/29/19 Natalie Parde - UIC CS 421 37

The problem
with n-gram
and
feedforward
language
models?

In both approaches, model quality
is dependent on context size

Anything outside the fixed context
window has no impact on the
model’s decision!

10/29/19 Natalie Parde - UIC CS 421 38

Recurrent Neural
Language Models

• Recurrent neural language models
process sequences one word at a
time, as seen in the previous slides

• This means that they avoid
constraining the context size

• The hidden state embodies
information about all of the
preceding words, all the way back
to the beginning of the sequence

10/29/19 Natalie Parde - UIC CS 421 39

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the

current input word
2. Combine the weighted sums of (a)

the input embedding values and (b)
the activations of the hidden layer from
the previous step, to compute a new
set of activation values from the
hidden layer

3. Generate a set of outputs based on
the activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

10/29/19 Natalie Parde - UIC CS 421 40

Recurrent
Neural

Language
Models

• Recurrent models can be trained using the
same data used to train n-gram and
feedforward language models

• Collection of representative text
• Correct class → still the word that actually

comes next in the data
• Task: Predict the next word in a sequence

given all previous words, rather than only
those in a context window of size n

10/29/19 Natalie Parde - UIC CS 421 41

How can we generate
text with neural

language models?

Model Completion (Machine-Written, 10 Tries): The scientist named the
population, after their distinctive horn, Ovid’s Unicorn. These four-horned,
silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a
small valley, with no other animals or humans. Pérez noticed that the valley
had what appeared to be a natural fountain, surrounded by two peaks of rock
and silver snow.

Pérez and the others then ventured further into the valley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on
top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These
creatures could be seen from the air without having to move too much to see
them – they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the
creatures also spoke some fairly regular English. Pérez stated, “We can see,
for example, that they have a common ‘language,’ something like a dialect
or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where
the animals were believed to be descendants of a lost race of people who
lived there before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures
were created when a human and a unicorn met each other in a time before
human civilization. According to Pérez, “In South America, such incidents
seem to be quite common.”

However, Pérez also pointed out that it is likely that the only way of knowing
for sure if unicorns are indeed the descendants of a lost alien race is through
DNA. “But they seem to be able to communicate in English quite well, which I
believe is a sign of evolution, or at least a change in social organization,” said
the scientist.

10/29/19 Natalie Parde - UIC CS 421 42

Generation
with Neural

Language
Models

1. Sample the first word in the output from
the softmax distribution that results from
using the beginning of sentence marker
(<s>) as input

2. Get the embedding for that word
3. Use it as input to the network at the next

time step, and sample the following word
as in (1)

4. Repeat until the end of sentence marker
(</s>) is sampled, or a fixed length limit is
reached

10/29/19 Natalie Parde - UIC CS 421 43

Autoregressive
Generation

• This technique is referred to as
autoregressive generation

• Word generated at each timestep
is conditioned on the word
generated previously by the
model

• Key to successful autoregressive
generation?

• Prime the generation component
with appropriate context (e.g.,
something more useful than <s>)

10/29/19 Natalie Parde - UIC CS 421 44

Autoregressive Generation

<s> RNN

softmax

pumpkin

10/29/19 Natalie Parde - UIC CS 421 45

Autoregressive Generation

<s> RNN

softmax

pumpkin

pumpkin RNN

softmax

spice

10/29/19 Natalie Parde - UIC CS 421 46

Autoregressive Generation

<s> RNN

softmax

pumpkin

pumpkin RNN

softmax

spice

spice RNN

softmax

latte

10/29/19 Natalie Parde - UIC CS 421 47

Sequence Labeling

• Task: Given a fixed set of labels,
assign a label to each element of a
sequence

• Example: Part-of-speech tagging
• In an RNN:

• Inputs → word embeddings
• Outputs → label probabilities

generated by the softmax (or
other activation) function over the
set of all labels

10/29/19 Natalie Parde - UIC CS 421 48

Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

latte

t3

h3

adjective

noun

10/29/19 Natalie Parde - UIC CS 421 49

Sequence
Classification

• Task: Given an input sequence,
assign the entire sequence to a
class (rather than the individual
tokens within it)

• Useful for:
• Document-level topic

classification
• Spam detection
• Message routing
• Deception detection
• Any other applications for which

sequences of text are classified
as belonging to one of a small
number of categories!

10/29/19 Natalie Parde - UIC CS 421 50

How to use RNNs for sequence
classification?

1

Pass the sequence
through an RNN one
word at a time, as
usual

2

Assume that the
hidden layer for the
final word, hn, acts as a
compressed
representation of the
entire sequence

3

Use hn as input to a
subsequent
feedforward neural
network

4

Choose a class via
softmax over all the
possible classes

10/29/19 Natalie Parde - UIC CS 421 51

Sequence Classification

pumpkin RNN

spice RNN

latte RNN

10/29/19 Natalie Parde - UIC CS 421 52

Sequence Classification

pumpkin RNN

spice RNN

latte RNN

hn

FNN coffee

10/29/19 Natalie Parde - UIC CS 421 53

Additional
Guidelines for

Sequence
Classification

No intermediate outputs (e.g., “pumpkin” = coffee) for
words in the sequence that precede the last word → no
loss terms associated with those elements

Loss function is based entirely on final classification task!

However, errors are still propagated backward all the way
through the RNN

The process of adjusting weights the entire way through
the network based on the loss from a downstream
application is often referred to as end-to-end training

10/29/19 Natalie Parde - UIC CS 421 54

Deep Recurrent Neural
Networks

RNN

hn

FNN

• As demonstrated with sequence classification, it is possible to
combine neural networks to form more complex architectures

• RNN + Feedforward Neural Network
• Two RNNs
• Possibilities are (theoretically) endless!

10/29/19 Natalie Parde - UIC CS 421 55

Stacked
RNNs

• Use the entire sequence of outputs from
one RNN as the input sequence to another

• Capable of outperforming single-layer
networks

• Why?
• Having more layers allows the network

to learn representations at differing
levels of abstraction across layers

• Early layers → more fundamental properties
• Later layers → more meaningful groups of

fundamental properties

10/29/19 Natalie Parde - UIC CS 421 56

Stacked RNNs

RNN

hn1

RNN

hn2

RNN

hn3

• Optimal number of RNNs to stack together?
• Depends on application and training set

• More RNNs in the stack → increased training costs

10/29/19 Natalie Parde - UIC CS 421 57

Bidirectional
RNNs

• Simple RNNs only consider the information
in a sequence leading up to the current
timestep

• ℎ%
I = 𝑅𝑁𝑁ILMNOMP(𝑥0%)
• ℎ%

I corresponds to the normal hidden
state at time t

• This could be visualized as the context to
the left of the current time

Natalie ran to TBH 180G

10/29/19 Natalie Parde - UIC CS 421 58

Bidirectional
RNNs

• However, in many cases the context after
the current timestep (to the right of the
current time) could be useful as well!

• In many applications we have access to the
entire input sequence at once anyway

Natalie ran to TBH 180G

Natalie ran her code again

10/29/19 Natalie Parde - UIC CS 421 59

Bidirectional RNNs

• How can we make use of
information from both sides of the
current timestep?

• Simple solution:
• Train an RNN on an input

sequence in reverse
• ℎ%R = 𝑅𝑁𝑁ROSTNOMP(𝑥%U)

• ℎ%R corresponds to
information from the
current timestep to the
end of the sequence

• Combine the forward and
backward networks

10/29/19 Natalie Parde - UIC CS 421 60

Bidirectional RNNs

• Two independent RNNs
• One where the input is processed from

start to end
• One where the input is processed from

end to start
• Outputs combined into a single

representation that captures both the left
and right contexts of an input at each
timestep

• ℎ% = ℎ%
I⨁ℎ%R

• How to combine the contexts?
• Concatenation
• Element-wise addition, multiplication,

etc.

10/29/19 Natalie Parde - UIC CS 421 61

Bidirectional RNNs

RNN

RNN

Natalie ran to TBH 180G

180G TBH to ran Natalie

+
ℎ%

ℎ%
I

ℎ%R

10/29/19 Natalie Parde - UIC CS 421 62

Bidirectional
RNNs are

particularly
useful for
sequence

classification.

• Simple RNN → final state naturally reflects
more information about the end of the
sentence

• Bidirectional RNN → final state is a
combination of the forward and backward
passes

10/29/19 Natalie Parde - UIC CS 421 63

Sequence Classification with a Bidirectional RNN

pumpkin RNN

spice RNN

latte RNN
FNN

coffee

latte RNN

spice
RNN

pumpkin
RNN

+

10/29/19 Natalie Parde - UIC CS 421 64

Managing
Context in

RNNs

• In a simple RNN, the final state tends to
reflect more information about recent items
than those at the beginning of the sequence

• Distant timesteps → less information
• However, long-distance information can be

critical to many applications!

N
atalie

took
a train
to O

’H
are

and
then
a plane
to L.A

.
and
then
a plane
to Tokyo
and
then
a plane
to M

iyazak
i w

here
she
finally
U

bered
to her
hotel

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

10/29/19 Natalie Parde - UIC CS 421 65

Why is it so
hard to
maintain
long-
distance
context?

• Provide information useful for the
current decision (input at t)

• Update and carry forward information
required for future decisions (input at
time t+1 and beyond)

Hidden layers must perform two
tasks simultaneously

• When small derivatives are repeatedly
multiplied together (as would happen
when backpropagating through time for
a long sequence), gradients can
become so close to zero at early
layers that they are no longer
effective for model training

Vanishing gradients

10/29/19 Natalie Parde - UIC CS 421 66

How can we
address this?

• Design more complex RNNs
that learn to:

• Forget information that is
no longer needed

• Remember information
still required for future
decisions

10/29/19 Natalie Parde - UIC CS 421 67

Long Short-Term
Memory Networks
(LSTMs)

• Remove information no longer needed
from the context, and add information
likely to be needed later

• Do this by:
• Adding an explicit context layer to

the architecture
• Control the flow of information into

and out of network layers using
specialized neural units called
gates

10/29/19 Natalie Parde - UIC CS 421 68

LSTM Gates

• Feedforward layer + sigmoid activation +
pointwise multiplication with the layer being gated

• Combination of sigmoid activation and pointwise
multiplication essentially creates a binary mask

• Values near 1 in the mask are passed through
nearly unchanged

• Values near 0 are nearly erased

10/29/19 Natalie Parde - UIC CS 421 69

LSTM
Gates

• Forget gate: Should we erase this
existing information from the context?

• Input gate: Should we write this new
information to the context?

• Output gate: What information should
be revealed as output for the current
hidden state?

Three main gates:

10/29/19 Natalie Parde - UIC CS 421 70

Long Short-
Term

Memory
Networks

(LSTMs)

• LSTMs thus accept as input:
• Context layer
• Hidden layer from previous timestep
• Current input vector

• The output of the hidden layer can be used
as input to subsequent layers in a stacked
RNN, or to the network’s output layer

10/29/19 Natalie Parde - UIC CS 421 71

Gated
Recurrent

Units
(GRUs)

• Also manage the context that is passed
through to the next timestep, but do so by
utilizing a simpler architecture than LSTMs

• No separate context vector
• Only two gates

• Reset gate
• Update gate

• Gates still use a similar design to that seen
in LSTMs

• Feedforward layer + sigmoid
activation + pointwise multiplication
with the layer being gated, resulting in a
binary-like mask

10/29/19 Natalie Parde - UIC CS 421 72

GRU Gates
• Reset: Which aspects of the previous hidden state are relevant to the current

context?
• What can be ignored?

• Update: Based on the intermediate representation produced by the reset gate,
which aspects will be used directly in the new hidden state?

• Which aspects of the previous state need to be preserved for future use?
• Recall that ht = 𝜎 𝑊xt + 𝑈ht−1 + 𝐛
• Letting ht’ be an intermediate representation learned by the reset gate, and z be

an intermediate representation produced by the update gate:
• ht = 1 − zt ht−1 + ztht′

10/29/19 Natalie Parde - UIC CS 421 73

Comparing Inputs and Outputs for
Neural Units

x

h

xtht-1

ht

xtht-1

htct

ct-1 xtht-1

ht

Feedforward RNN LSTM GRU

10/29/19 Natalie Parde - UIC CS 421 74

When to
use LSTMs
vs. GRUs?

• Computational efficiency:
Good for scenarios in which you
need to train your model quickly
and don’t have access to high-
performance computing
resources

Why use GRUs instead of
LSTMs?

• Performance: LSTMs generally
outperform GRUs at the same
tasks

Why use LSTMs instead
of GRUs?

10/29/19 Natalie Parde - UIC CS 421 75

Do inputs to
RNNs need to

be word
embeddings?

• Nope
• In some cases, word embeddings might not

be the best type of input:
• Lexicon is so large that it is impractical

to represent each possible word as an
embedding

• Dataset has many unknown words
• Morphological information is critical to

the task

10/29/19 Natalie Parde - UIC CS 421 76

Alternatives
to Word
Embeddings

Input character sequences directly to the
RNN

Input character
sequences

Use subword representations rather than full
word embeddings

Use subword
representations

Build input sequences based on information
from linguistic analyses

Build input
sequences

10/29/19 Natalie Parde - UIC CS 421 77

Input
representations

can also be
combined….

• Particularly successful: Word embeddings
enriched with character information

• Learn embeddings from a bidirectional
RNN that accepts character sequences
for each word as input

• Concatenate the learned character
embeddings with ordinary word
embeddings

• Opportunities are endless …currently a very
active research area!

10/29/19 Natalie Parde - UIC CS 421 78

Summary:
Sequence

Processing
with

Recurrent
Networks

• Sequence processing makes use of temporal
information from input sequences

• Recurrent neural networks (RNNs) are neural networks
specifically designed for sequence processing

• Bonus: Can accept inputs of variable length
• RNNs base their decisions on both current input and

activation values from the previous timestep
• RNNs are particularly useful for text generation,

sequence labeling, and (when combined with a
feedforward network) sequence classification

• More complex varieties of RNNs include:
• Stacked RNNs
• Bidirectional RNNs
• Long short-term memory networks (LSTMs)
• Gated recurrent units (GRUs)

• Although RNNs usually accept word embeddings as input,
they can also use other types of input sequences (e.g.,
character sequences or subword embeddings)

10/29/19 Natalie Parde - UIC CS 421 79

